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Reinforced, Incremental and Cross-lingual Event
Detection From Social Messages
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Abstract—Detecting hot social events (e.g. political scandal, momentous meetings, natural hazards, etc.) from social messages is
crucial as it highlights significant happenings to help people understand the real world. On account of the streaming nature of social
messages, incremental social event detection models in acquiring, preserving, and updating messages over time have attracted great
attention. However, the challenge is that the existing event detection methods towards streaming social messages are generally
confronted with ambiguous events features, dispersive text contents, and multiple languages, and hence result in low accuracy and
generalization ability. In this paper, we present a novel reinForced, incremental and cross-lingual social Event detection architecture,
namely FinEvent, from streaming social messages. Concretely, we first model social messages into heterogeneous graphs integrating
both rich meta-semantics and diverse meta-relations, and convert them to weighted multi-relational message graphs. Secondly, we
propose a new reinforced weighted multi-relational graph neural network framework by using a Multi-agent Reinforcement Learning
algorithm to select optimal aggregation thresholds across different relations/edges to learn social message embeddings. To solve the
long-tail problem in social event detection, a balanced sampling strategy guided Contrastive Learning mechanism is designed for
incremental social message representation learning. Thirdly, a new Deep Reinforcement Learning guided density-based spatial
clustering model is designed to select the optimal minimum number of samples required to form a cluster and optimal minimum
distance between two clusters in social event detection tasks. Finally, we implement incremental social message representation
learning based on knowledge preservation on the graph neural network and achieve the transferring cross-lingual social event
detection. We conduct extensive experiments to evaluate the FinEvent on Twitter streams, demonstrating a significant and consistent
improvement in model quality with 14%-118%, 8%-170%, and 2%-21% increases in performance on offline, online, and cross-lingual
social event detection tasks.

Index Terms—Social event detection, graph neural network, reinforcement learning, contrastive learning, DBSCAN
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1 INTRODUCTION

SOCIAL events are occurrences of real-world unusual
happenings that involve specific time, location, person,

content, etc. [1], while are widely spread and discussed
in social networks and media. For instance, nine people
including the retired professional basketball player Kobe
Bryant, his 13-year-old daughter Gianna, baseball coach
John Altobelli, and five other passengers were killed in
the 2020 Calabasas helicopter crash1 happened on January
26, 2020. Social media platforms (Twitter, Weibo, Facebook,
Tumblr, Telegram, etc.) have become the main source of
official and personal social news. These platforms attract
large numbers of users because they provide convenient
ways for people to share and seek views regarding social
events in real-time. Detecting social events from mass social
messages is beneficial. On the one hand, storing daily news
and social messages in the forms of events can make the
information storage more organized [2] and enrich the infor-
mation recommendation [3]. On the other hand, social event
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detection can be applied in abundant real applications, such
as Public Opinion Analysis [4], Sentiment Analysis [5], En-
terprise Risk Management [6], Political Election Forecast [7],
etc. Technically, social event detection focuses on learning
highly effective event-related clusters modeled from a large
number of real social messages.

However, the social event detection task is more chal-
lenging than traditional text mining or social network min-
ing, since a general social event is a meaningful and influen-
tial combination of social messages in an open domain. So-
cial events often contain some event-related heterogeneous
elements, such as location, person, organization, relations,
date and time, keywords, etc. Although there is heteroge-
neous information network (HIN) [8] based social messages
models [4], [9], [10], how to learn more discriminative em-
bedding of social messages is still an intractable problem to
be solved. Especially, the contents of social messages are al-
ways overlapping, redundant and discrete, where the noisy
nature of messages stream makes traditional outlier detec-
tion technologies [11]–[14] inappropriate for the semanti-
cally rich event detection task. Hence, the first challenge
is still how to model social messages and design a more
discriminative and explanatory social message embedding
framework. In addition to the above complex semantics,
the event detection task has characteristics of Long Tail
distribution [15]. Generally, it is limited by the cost of social
data collection and social event annotation. The number of
messages (samples) contained in each event is relatively im-
balanced [9]. The long-tail problem contributes to the second

https://en.wikipedia.org/wiki/2020_Calabasas_helicopter_crash


JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

challenge, which is the degradation of the performance of
detection approaches and poor generalization. More prac-
tical methods of social event detection are usually using
streaming clustering detection technology rather than event
classification technology. Besides, practical social event de-
tection methods also need to achieve incremental detection
on streaming messages [12], [16] and even cross-lingual de-
tection [17], [18]. On the one hand, both social messages and
social events have time attributes, and the number of social
events will also increase in social message streams. Different
from the existing online social event detection methods [1],
[13], [14], [19]–[22] based on deterministic patterns, such as
clique, dense graph, keywords, topic, and template, etc., a
semantic incremental event detection framework with better
generalization performance is worthy of the effort. On the
other hand, cross-lingual messages lead to inconsistencies in
the semantic embedding space of the underlying words or
entities [23], which also brings direct usability difficulties for
the event detection model (although there are third-party
translation tools or translation alignment models to solve
these problems, these difficulties are relatively objective).
Therefore, the third challenge is how to implement cross-
lingual social event detection, and even generalize to low-
resource language messages data.

To tackle the above challenges, we present a novel
reinForced, incremental, and cross-lingual social Event de-
tection architecture, namely FinEvent, from streaming social
messages. The architecture mainly contains 5 modules of
preprocessing, message embedding, training, detection, and
transferring. Firstly, we also leverage heterogeneous infor-
mation networks (HINs) [8] to organize event-oriented ele-
ments and relations of various types into one unified graph
structure. Different from the previous methods [4], [9], [10]
converting heterogeneous graph to homogeneous graph by
using meta-path instances, we propose a weighted multi-
relational graph for the first time to model the association
between social messages, reserving the number of meta-
path instances as different weight of edge/relation. Sec-
ondly, we propose a novel Multi-agent reinforced weighted
multi-relational Graph Neural Network framework, namely
MarGNN, to learn the social message embedding with
reinforcement learning (RL). Concretely, we harness the
power of GNN to learn representations from the semantic
and structural information contained in the social messages
and use the multi-agent Actor-critic algorithm (AC) [24] to
learn the optimal numbers/thresholds for each relation, in
order to guide both intra-relation and inter-relation mes-
sages aggregations, respectively. Third, to solve the long-
tail problem in social event detection, a Balanced sampling
strategy based Contrastive Learning mechanism, namely
BasCL, is designed to guide the training of the framework.
Then, we periodically update messages to keep an up-to-
date embedding space, and implement incremental social
event detection based on a well-designed knowledge preser-
vation technology on the MarGNN. Fourth, we also design a
new Deep Reinforcement Learning(DRL) guided DBSCAN
model, namely DRL-DBSCAN based on the learned social
messages embeddings to achieve social event clustering
detection tasks automatically. Through DRL-DBSCAN, we
use the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) [25] to learn optimal parameters of minPts

- the minimum number of samples required to form a
cluster, and ε - the minimum distance between two clusters,
in the social streams. In the end, a new Cross-lingual social
message embedding method, namely Crlme, is presented,
transferring the parameters of MarGNN to improve the per-
formance of embedding on target-language messages (non-
English). Based on the Crlme method, we also implement
the cross-lingual social event detection.

Our preliminary work appeared in the proceedings of
Web Conference 2021 [10]. The journal version in this paper
has extended the original parameters-preserved incremental
event detection model KPGNN to a reinforced, incremental
and cross-lingual social event detection architecture. This
full-version involves several improvements in upgrading
the methodology and the frame structure of the proposed
architecture. In terms of model upgrades, different from
transforming the HINs into homogeneous graphs, we first
introduced the weighted multi-relational graphs to pre-
serve richer structural and statistical features from hetero-
geneous relations in graphs. Second, we proposed the novel
MarGNN framework to learn more discriminative social
message embedding. Specifically, by learning the optimal
preserving thresholds with RL, MarGNN reasonably retains
and integrates the most top-p valuable semantic and struc-
tural information from each relation. Third, we proposed
the new DRL-DBSCAN- differing from the heuristic K-
Means or DBSCAN methods, to realize social event clus-
tering detection tasks without manual parameters. Fourth,
we presented the new Crlme method to achieve the cross-
lingual social event detection. In the experiments, more
state-of-the-art performances are presented and analyzed.
Thorough and deep analyses are presented to demonstrate
the effectiveness and explanation of FinEvent2.

In summary, the contributions of this paper are summa-
rized as follows:
• A novel social event detection architecture, named as

FinEvent, is presented. FinEvent can realize offline, online,
and cross-lingual social event detection by utilizing both so-
cial messages representation learning framework MarGNN,
cross-lingual social message representation learning method
Crlme, and social event clustering detection model DRL-
DBSCAN.
• A new multi-agent reinforced weighted multi-

relational graph neural network framework MarGNN is
proposed to learn more discriminative social message em-
bedding. It provides an insightful explanation from the
perspective of the importance of different relations in social
message aggregation.
• A balanced sampling-based contrastive learning strat-

egy BasCL is designed as the fundamental objective function
of social message representation learning to solve the long-
tail problem in social event detection.
• A new deep reinforcement learning guided density-

based spatial clustering model DRL-DBSCAN is proposed
to achieve automatical social event clustering detection. It is
the first work to learn optimal parameters of DBSCAN by
deep reinforcement learning without offline maintenance or
manual experience.

2. The source code and data of this work is publicly available at https:
//github.com/RingBDStack/FinEvent.

https://github.com/RingBDStack/FinEvent
https://github.com/RingBDStack/FinEvent
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• A new cross-lingual social message representation
learning method Crlme is presented to improve the per-
formance of low-resource language message embedding. It
provides a low-cost transfer learning application from the
perspectives of cross-lingual social event detection.
• Extensive experiments and analyses are implemented

on Twitter streams, demonstrating that FinEvent outper-
forms the existing SOTA social event detection methods in
terms of effectiveness and explanation. Even incremental
and cross-lingual social event detection tasks are released in
the convenient way of knowledge preservation and knowl-
edge transferring the applicability of FinEvent.

2 PROBLEM FORMULATION AND NOTATIONS

In this section, we summarize the main notations in Table 1,
and formalize the definition of Social Stream, Social Event,
Heterogeneous Information Network, Weighted Multi-Relational
Message Graph, Social Event Detection, Incremental Social Event
Detection, and Cross-lingual Social Event Detection as follows.

Definition 2.1. The social stream S = M0, ...,Mi−1,Mi, ...
is a continuous and temporal sequence of blocks of social
messages, where Mi is a message block that contains all the
messages which arrive during time period [ti, ti+1). We
denote a message block Mi as Mi = {mj |1 ≤ j ≤ |Mi|},
where |Mi| is the total number of messages contained in the
Mi, and mj is one message.

Definition 2.2. A social event e = {mi|1 ≤ i ≤ |e|} is a
set of correlated social messages that discuss the same real-
world happening event. Note that we assume each social
message belongs to at most one event.

For example, the catastrophic fire at Notre Dame Cathe-
dral in Paris in April 2019 triggered widespread discussions
on Twitter. Here, Notre Dame Cathedral fire3 can be defined as
an event, which contains a series of related tweets (similar
to the raw messages m1, m2, m3 in Fig. 2). In addition to
hot events, our work also pays attention to less influential
social events, such as the Spanish Tomato War4, the poisoning
of the Golden Eagle in Aberdeenshire5 and so on.

Definition 2.3. A heterogeneous information network HIN
is a graph G = (V, E), where V stands for collections of
nodes with various types of event-related elements in social
events, and E stands for the collections of edges between the
messages and corresponding event-oriented elements.

Definition 2.4. We define a weighted multi-relational mes-
sage graph as G = {M,X ,W, {Ewr }|Rr=1}, where M is
a set of nodes M = {m1, ...,mi, ...,mn} and n is the
number of nodes. Each node refers to a message mi and
has a d-dimension feature vector denoted as xmi ∈ Rd.
X = {xm1 , ...,xmi , ...xmn} is a set of all node features.
eri,j = (mi,mj) ∈ Ewr is an edge/connect between message
mi and mj with a relation r ∈ {1, ..., R} and given edge
weight wri,j ∈ W . Note that an edge can be associated
with multiple relations and there are R different types of
relations.

3. https://en.wikipedia.org/wiki/Notre-Dame de Paris fire
4. https://en.wikipedia.org/wiki/La Tomatina
5. https://www.bbc.co.uk/news/uk-scotland-north-east-orkney-

shetland-57000780

TABLE 1: Glossary of Notations.
Notation Description
S;M ;G Social stream; Message block; Event based het-

erogeneous information network
m Message or message as a node type
e;E Event; Set of events
w The window size for maintaining the model
o; e;u Word; Named entity; User (node types)
Amr The adjacency matrix between node m and rela-

tion r
G Weighted Multi-relational Message graph
N The total number of messages in G
X The initial feature vectors of the messages in G
E(X,A) GNN that embeds the messages in G
l;L GNN layer number; Total number of layers
h
(l)
mi

The representation of mi at the l-th layer
hmi The final representation of mi
Aagg , Sagg ,
Ragg

Action space, state space and reward function of
Multi-agent Reinforcement Learning

a
(k)
agg,r ,
s
(k)
agg,r ,
r
(k)
agg,r

Action, state and reward of Multi-agent Rein-
forcement Learning at epoch k

pr Preserving threshold under relation r;
Lagg,r Actor loss under relation r;
b;B Mini-batch number; Total number of mini-

batches
{mb} A set of messages in the b-th mini-batch
h̃mi The corrupted representation of mi
mi+ A message in the same class as mi
mi− A message that is not in the same class as mi
Lt; Lp Triplet loss; Global-local pair loss
s The summary vector of G
Aclu, Sclu,
Rclu

Action space, state space and reward function of
Deep Reinforcement Learning

a
(τ)
clu,r ,

s
(τ)
clu,r , r(τ)clu,r

Action, state and reward of Deep Reinforcement
Learning at episode τ

Lclu Value network loss;

Definition 2.5. Given a message block Mi, a social event
detection algorithm learns a model f(Mi; θ) = Ei, such
that Ei = {ek|1 ≤ k ≤ |Ei|} is a set of events contained in
Mi. Here, θ denotes the parameter of f .

Definition 2.6. Given a social stream S, an incremen-
tal social event detection algorithm learns a sequence of
event detection models f0, ..., ft−w, ft, ft+w, ..., such that
ft(Mi; θt, θt−w) = Ei for all message blocks in {Mi|t+ 1 ≤
i ≤ t + w}. Here, Ei = {ek|1 ≤ k ≤ |Ei|} is a set of events
contained in the message block Mi, w is the window size for
updating the model, θt and θt−w are the parameters of ft
and ft−w, respectively. Note that ft extends the knowledge
of its predecessor ft−w by depending on θt−w. In particular,
we call f0 which extends no previous model as the initial
model.

Definition 2.7. Given a social event detection algorithm
fE(Mi; θ) = Ei, Mi ∈ SE in English social stream, cross-
lingual social event detection algorithm learn a upgraded
model fNoE(Mj ; θ̄) = Ej from fE(Mi; θ), where Ej =
{ek|1 ≤ k ≤ |Ej |} is also a set of events contained in
no-English message block Mj ∈ SNoE . Here, θ̄ denotes the
parameter of the upgraded model fNoE from fE .
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3 FINEVENT ARCHITECTURE

FinEvent performs social event detection in an incremental
life-cycle mechanism. The design of FinEvent architecture
aims at being consistent with the streaming nature of so-
cial messages and real situations in event detection. Con-
cretely, we require a flexible architecture to i). deal with the
streaming nature of social messages in an online manner;
ii). continuously acquire, preserve and extend the message
semantics; iii). handle the actual problems, especially the
cross-lingual event detection task. In addition, FinEvent is
also capable of realizing cross-lingual transfer. This section
encompasses the different stages in the life-cycle of Fin-
Event, and gives a picture of how FinEvent operates cross-
lingual transferring detection.

3.1 Life-cycle Mechanism
To cope with the streaming message challenge, Fin-
Event adopts the life-cycle mechanism (shown in Fig. 1),
which comprises four stages, i.e., pre-training, single-
language detection, cross-lingual detection, and mainte-
nance denoted as Stage I, Stage II, Stage III, and Stage
IV respectively in Fig. 1. In the pre-training stage, we
store a small portion of social messages in advance, upon
which the initial weighted multi-relational message graph
is constructed. Then we leverage the processed graph to
train the initial model. In the detection stage, we update the
weighted multi-relational message graph with the incoming
message block by inserting the new message nodes, their
linkages with the existing message nodes, and the linkages
within themselves, and reconstruct the weighted relation.
Simultaneously, after the updating process, the pre-trained
model is directly used to detect social events from unseen
messages without a new round of training. In the mainte-
nance stage, we remove the obsolete social messages in the
message graph, and the model is maintained by continuing
training using the updated graph. The maintained model in
this life-cycle can be then used for the detection stage in the
next life-cycle. With such a designed life-cycle mechanism,
FinEvent is able to well adapt the streaming nature of social
messages, and achieve the online manner of event detection.

3.2 Incremental Learning Framework
Aiming at the generalization challenges in incremental so-
cial event detection, we adopt incremental learning com-
bined with the above life-cycle mechanism in order to help
FinEvent continuously acquire, preserve and extend the
semantic space, and make use of its advantages to deal with
the actual problems.

Preliminarily, we require our architecture to efficiently
organize and process various elements in the social streams
for full utilization and effectively interpret these elements
to discover underlying knowledge that would help event
detection. In order to obtain the message embedding, we
first leverage the HIN to model the streaming event-oriented
social messages. Then we proceed to extract different re-
lations in the constructed heterogeneous graph which are
further converted to a series of weighted multi-relational ho-
mogeneous graphs according to their meta-path instances.

Secondly, FinEvent needs to effectively and efficiently
update its embedding space when new messages arrive.

English Message 
Block M0

Construct initial 

message graph 

& train initial model

Update 

message graph 

& detect events 

Update 

message graph 

& detect events 

Remove 

obsolete nodes 

& continue training

English Message 
Block Mt+1

...

Stage I

Pre-training

Stage II

Single-language

detection

Stage IV

Maintenance

English Message 
Block Mt+w

Non-English 
Message Block 

Mt+1

Non-English 
Message Block 

Mt+1

...

Stage III

Cross-lingual 

detection

Stage IV

Maintenance

Fig. 1: Incremental life-cycle and cross-lingual transferring
mechanisms in FinEvent architecture.

We accordingly design a reinforced graph neural network
framework MarGNN in FinEvent based on the obtained
multi-relational graph, which harnesses the great power of
GNNs to tune parameters for social event detection pur-
poses and preserve the helpful knowledge about social data.
Combined with the life-cycle mechanism, our FinEvent can
achieve continuous training in incremental learning mode
instead of retaining from scratch.

3.3 Cross-lingual Transferring Mechanism

Inspired by the preserving and extending feature of
FinEvent, which leverages the preserved parameters in
MarGNN to infer events in the detection stage and extend
MarGNN by resuming the training process using incoming
data in the maintenance stage, we adopt such powerful
inductive learning ability to solve the cross-lingual problem.
As shown in the cross-lingual detection stage in Fig. 1, if
MarGNN is trained using English messages, for instance,
and the incoming messages are all in French or Arabic, we
can still achieve the detection owing to the preserved pa-
rameters in MarGNN and continue to extend it for next life
cycle. Hence, we obtain the dynamic FinEvent architecture
and explore it for real-world application.

4 REINFORCED MULTI-RELATIONAL GRAPH NEU-
RAL NETWORK FRAMEWORK

Fig. 2 shows the proposed framework FinEvent with five
important modules. For the original social messages, we
first convert them into a weighted multi-relational graph
(Sec. 4.1). Then we use multi-agent reinforcement learning
to select neighbors for different relations, and obtain the
aggregation of all messages through the weighted multi-
relational graph neural network (Sec. 4.2). In order to bal-
ance sampling and cope with incremental detection scenar-
ios, a strategy-based contrast learning mechanism is used to
train the GNN (Sec. 4.3). Finally, we use the DBSCAN model
guided by deep reinforcement learning for event clustering
parameter debugging (Sec. 4.4). In addition, we also give
cross-language detection in Sec. 4.5, overall algorithm pro-
cedures, and Algorithm 1 at the end of this section.



JOURNAL OF IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Raw Messages

...

m1

m2

@user3 Jan 28th, 2020

BREAKING: Kobe Bryant, the 

Los Angeles Lakers superstar 

and future NBA Hall of Famer, 

died on Sunday in a helicopter 

crash. He was 41.  

m4

I. Preprocessing

b) Weighted Multi-relational Message Graphs

message

user

words

location

message

user

words

location

... ...
@user2 Jan 27th, 2020

Kobe Bryant avait 41 ans. Une 

femme, 4 filles, dont une de 

seulement 7 mois. Il avait pris 

sa retraite en 2018. ...

@user1 Jan 27th, 2020

NBA legend Kobe Bryant was 

one of five people killed in a 

helicopter crash in Calabasas, 

California, ...@user2 

m3

@user3 Jan 27th, 2020

The Los Angeles County 

Sheriff Department’s 

Recruitment Unit is hosting its 

Inaugural Women’s 

Symposium.. ...

document time

a) Heterogeneous Social Message Graph

m1

m2

m3
m4

message-user-messagemessage-user-message

... ...

message-entity-message
message-location-message

choose

Multi-agent RL Module

Intra-Relation AGG

Inter-Relation AGG

m1

m2

m3

...

...

m1

m1+
m1-

Cluster
-ing

III. BasCL

...
word embedding

m3

m1

m4

m2

user1

user3

user2

Kobe

NBA
crash ‘Los Angeles’, 

LOC

‘Calabasas’,

LOC...
...

...

...

m3

m1

m4

m2

user1

user3

user2

Kobe

NBA
crash ‘Los Angeles’, 

LOC

‘Calabasas’,

LOC...
...

...

...

Threshold P

Node Selection

Center Node

Neighbor Node

Edge Filter

Center Node

Neighbor Node

Edge Filter

m4

hr hr hr

mn

...

m3

m1

m1
~

1/N∑

1/N∑

m1

m2

m4

D

II. MarGNN

IV. DRL-DBSCAN

V. Crlme

...

Cluster
-ing

Pre-trained
FinEvent

transfer

online triplet sampling

global-local pair sampling

Guide

Fig. 2: The architecture of the proposed FinEvent.

4.1 Weighted Multi-relational Social Message Graph

The heterogeneous social graph in Fig. 2 is a heteroge-
neous information network (HIN) extracted from messages
and event-oriented elements in social streams. In order
to prevent the loss of heterogeneous information between
different types of event elements, FinEvent saves richer con-
nection information by mapping HIN to a weighted multi-
relational graph G = {M,X ,W, {Ewr }|Rr=1} of message
nodes. We define the nodes in the multi-relational graph
as a series of message collections M with d-dimensional
features X (contains the average value of pre-trained word
embeddings of all words [26] and timestamp encoding).
When messages share different types of event elements,
edges belonging to different relations will be established
respectively. The edges eri,j = (mi,mj) ∈ Er of message
nodes mi and mj under relation r in the multi-relational
graph follows:

eri,j = min
{

[Amr ·Aᵀ
mr]i,j , 1

}
. (1)

Here, Amr is a submatrix of the adjacency matrix of the
HIN heterogeneous graph, where the rows represent all
information nodes, and the columns represent all event
element nodes belonging to the relation r. T is the transpose
of the matrix, and min{, } takes the smaller of the two
elements. In addition, in order to cope with the information
loss between two message nodes with multiple common
elements under the same relation, FinEvent introduces edge
weights in the construction process of different relations. We
define the weighted edges of the message nodes mi and mj

under relation r in the graph G as eri,j = (mi,mj) ∈ Ewr ,
where the edge weight wri,j ∈ W is

[
Amr ·Aᵀ

mr

]
i,j

.

4.2 Multi-agent Reinforced Aggregation in Multi-
relational Graph Neural Network Framework (MarGNN)

4.2.1 Reinforced Neighbor Selection

Considering that there are some meaningless links between
social information that affect message representation, we

first sample each relation before aggregation to retain neigh-
bors with high semantic and structural connections. Since
different relations in the multi-relational graph have dif-
ferent degrees of impurities and collectively affect the em-
bedding results, a collaborative learning method is needed
to find the balance between different relations. Previous
works use Bernoulli Multi-armed Bandit process [27] or
attention mechanism [28] to select neighbors, but they are no
longer applicable in increasing detection. For this reason, we
introduce multi-agent reinforcement learning in framework
MarGNN to guide each relation to perform Top-p neighbor
sampling before aggregation (the node selection part of
Fig. 2). Specifically, we first sort the neighbors of each under
the relation r in ascending order according to the Euclidean
distance, and then establish an agent for each relation as
the selector that retains the preserving threshold pr ∈ [0, 1].
When pr is 1, all neighbors are reserved, and when pr is 0,
all neighbors are discarded.

Concretely, the agent of each relation will learn in
the game how to find the balance between relations in
the task of streaming social detection. This process is a
Markov game of R agents, consisting of four elements
(Nagg, Aagg, Sagg, Ragg), where Nagg is the number of
agents, Aagg is the action space of the agents, Sagg is the
state space of the agents, Ragg is the reward function of
the agents. The specific details of the whole process are as
follows:
• State: In view of the fact that the preserving thresh-

olds of different relations jointly affect the final aggrega-
tion effect, we use the neighbor node representation h(k)

m

aggregating by the preserving thresholds of all relations to
calculate the average weighted distance under one relation,
so that each agent can take into account the influence of
other relations. At epoch k, the state s(k)agg,r which one agent
observe under relation r is defined as:

s(l)(k)agg,r =
1

|N |

N∑
i=1

∑
mj∈N (k)

r (mi)
w

(r)
i,j · D(h(k)

mi
,h(k)

mj
)∑

mj∈N (k)
r (mi)

w
(r)
i,j

, (2)
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where N (k)
r (mi) is the set of all preserved neighbor nodes

mj of the central node mi under relation r in the k-th epoch.
w

(r)
i,j is the weight of the edges of nodes mi and mj under

the relation r.
• Action: The action a

(l)(k)
agg,r ∈ Aagg of the agent is the

preserving threshold p(k)agg,r under the relation r in epoch k.
Since p(k)agg,r ∈ [0, 1] has the highest accuracy, we use discrete
actions to speed up the learning process.
• Reward: Since the goal of enhanced aggregation is to

find the best aggregation scheme to obtain the best cluster-
ing performance of the message, we use Normalized Mutual
Information (NMI) as the reward function to objectively
measure the clustering effect. And define the reward r

(k)
agg,r

under relation r in epoch k as follows:

r(k)agg,r = NMIk(|Etrue|). (3)

Here, NMIk(|Etrue|) refers to the NMI score that uses
the actual number of message categories |Etrue| to cluster
the representations of the messages. The representation of
message is aggregated based on action a

(l)(k)
agg,r , and we will

expand this process in detail in Sec. 4.2.2. Note that in
order to prevent disturbances caused by the DRL-DBSCAN
training process, we use K-Means as the clustering method.
Optimization. Based on the above definition, each agent
uses the Actor-critic algorithm [24] to select actions ac-
cording to the state through the actor network and finally
obtains the same reward to update the loss function. In
this process, each agent strives to obtain the greatest overall
benefit, multi-agents belong to a cooperative relation. The
loss function of actor under relation r is defined as:

Lagg,r = −
[(
r(k)agg,r+γQ(s(k+1)

agg,r , a
(k+1)
agg,r )−Q(s(k)agg,r, a

(k)
agg,r)

)
·

log
[
π(a(k)agg,r|s(k)agg,r)

]]
, (4)

where Q(, ) refers to the action value function and π(|)
represents the policy.

4.2.2 Weighted Relation-aware Neighbor Aggregation
In order to better guide the weighted multi-relational Graph
Neural Network to learn the message embedding, we pro-
pose a weighted relation-aware neighbor aggregation. As
shown in message embedding part of Fig. 2, the entire
aggregation process in MarGNN is divided into two parts:
intra-relation aggregation and inter-relation aggregation.

For intra-relation aggregation, participating neighbor
messages are controlled by the preserving threshold. This
process is formally expressed as the aggregation process of
the message mi belonging to the relation r at the l-th layer:

h(l)
mi,r ← AGG

(l)
intra,r

( heads
‖
(
⊕ {h(l−1)

mj
: mj ∈ N l

r(mi)}
))
,

(5)
where h(l−1)

mj ,r represents the embedding of the neighbor
message mj of the message mi in the l − 1-th layer under
relation r. N l

r(mi) means the set of a series of neighbors
of the message mi after the neighbor selection process with
the preserving threshold value p(l)r . The embedding h(0)

m of
each messages is the input feature. We introduce the multi-
head attention mechanism of Graph Attention Network [29]

for the neighbor aggregator AGG(l)
intra,r within relation r

considering the continuously increasing message stream.
heads

‖ represents head-wise concatenation [30], we splice the
outputs of multiple heads in the middle layer and average
them in the last layer. ⊕ stands the summation aggregation
operator.

Then in the inter-relation aggregation, the preserving
threshold of the relation is used as the weight of the rela-
tion embedding during inter-relation aggregation (we will
compare other aggregation to verify in Sec. 6.3.1). We define
the inter-relation aggregation of message mi in the l-th layer
as:

h(l)
mi
← h(l−1)

mi
⊗AGG(l)

inter

(
⊗ {p(l)r · h

(l)
mi,r}|

R
r=1

)
. (6)

Here, h(l)
mi,r represents the inter-aggregation embedding of

mi belongs to the relation r. We propose an inter-relation
aggregator AGG(l)

inter based on preserving threshold, where
⊗ is a splicing aggregation operator, e.g., concatenation,
sum, or Multi-layer Perceptron (MLP). The result of the
inter-relation aggregator and the embedding of the upper
layer of message mi are spliced as the final representation
of mi in the l-th layer. The inter-aggregation embedding
h(L)
mi

is regarded as the final embedding hmi
of mi.

4.3 Balanced Sampling Strategy based Contrastive
Learning Mechanism (BasCL)

The number of event classes in the incremental event de-
tection task is constantly changing, which makes the cross-
entropy loss function widely used in GNNs no longer
applicable. Contrastive learning [31] is not limited to a fixed
number of classes because it focuses on learning the com-
mon features between similar instances and distinguish-
ing differences between non-similar instances. Particularly,
contrastive learning can tackle the long-tail problem of
social events in the real world [15], in which some events
are sparse and niche, rendering the model hard to detect.
What’s more, the representations based on contrastive learn-
ing contain more cluster-like structure information, which
can benefit the downstream event clustering tasks [32]. In-
spired by [33], [34] and [35], [36], we introduce triplet losses
in BasCL to balance a large number of negative samples of
other event classes and a small number of positive samples
of the same event class, and add global-local pair loss on
this basis to preserve the graph structure information in the
process of detecting long-tail events incrementally.

For each message mi, we first sample a positive sample
mi+ and a negative sample mi− to construct triple loss and
update the embedding of the message in the direction of the
positive sample. The process is formalized as:

Lt =
∑

(mi,mi+,mi−)∈T

max
{
D(hmi ,hmi+)−D(hmi ,hmi−)+a, 0

}
,

(7)
where (mi,mi+,mi−) is a triple, and T is a series of
triples sampled in an online manner [34]. D(, ) calculates
the Euclidean distance between two messages. max{.} is
used to get the larger of the two elements. a is a hyper-
parameter that determines how far away a message is from
its negative sample compared to its positive sample.
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We also construct a global-local pair loss to make better
use of the influence of similar structural information by
minimizing the cross-entropy of global summary and local
message representation:

Lp =
1

N

N∑
i=1

(
logS(hmi

, s) + log
(
1− S(h̃mi

, s)
))
. (8)

The global summary s is the average of all message repre-
sentations, and S(, ) is a bilinear scoring function used to
get the probability that the two operands come from the
joint distribution. We use the noise-contrastive method [37]
to construct X̃ by the row-wise shuffle of X to obtain
the corrupted representation h̃mi

of message representation
hmi

.
Optimization. We consider positive-negative sample com-
parisons and global-local comparisons in a balanced man-
ner, and define the overall loss function of BasCL as:

LBasCL = Lt + Lp. (9)

4.4 Deep Reinforcement Learning guided DBSCAN
Model (DRL-DBSCAN)

In the event detection stage, we cluster the messages ac-
cording to the learned message representation (this pro-
cess follows the Def. 2.6). The commonly used distance-
based clustering algorithm K-Means is easily used to clus-
ter representations, but there are limitations in the task
of incremental detection due to the need to specify the
number of categories. Density-based clustering algorithm
DBSCAN [38] automatically adjust the number of classes,
but it still has two parameters (the distance parameter
ε and the minimum sample number parameter minPts)
that need to be manually adjusted and cannot adapt to
match message blocks with different data distributions in
the constantly changing message input. To this end, we
first propose a novel reinforcement learning in model DRL-
DBSCAN to explore how to obtain a stable clustering effect
of social events in the multi-round parameter interaction
with DBSCAN. To the best of our knowledge, we are the
first to combine DBSCAN with RL-methods. DRL-DBSCAN
regards the parameter adjustment system as an agent, the
incremental social data as the environment, and formally
express the process as a Markov decision process MDP
(Sclu, Aclu, Rclu), which Sclu is state space, Aclu is action
space, Rclu is reward function. Specifically, we define three
elements as follows:
• State: The state is the clustering situation of the mes-

sage block events observed by the agent after each episode
of parameter adjustment, that is, the description of the
clustering result. Considering that the cluster label of the
event cannot be used when observing the state, the state
s
(τ)
clu in the episode τ is defined a quaternary set:

s
(τ)
clu = {ε(τ), |E|(τ), coh(τ), sep(τ)}, (10)

composed of the current minimum neighbor distance ε(τ),
the number of clusters |E|(τ), the average cohesion distance
coh(τ) and the average separation distance sep(τ) [39].
These states are affected by the action a(τ−1)clu of the previous
episode.

• Action: In order to prevent the curse of dimensionality
and speed up the DBSCAN processing speed, we use t-
Distributed Stochastic Neighbor Embedding [40] to reduce
the dimensionality of the message representation to 2 di-
mensions. Therefore, based on the recommendation of the
author of the DBSCAN algorithm for the minimum sample
number parameter, minPts is fixed to 2. Then, we define
the action a

(τ)
clu in episode τ is the change of ε parameter

value that should be selected for the current state s(τ)clu. In
addition, the action space is continuous data with upper and
lower bounds.
• Reward: For the reward function, we introduce the ex-

ternal evaluation index Calinski-Harabasz [41] (also known
as the Variance Ratio Criterion) to stimulate the agent. The
setting of this kind of reward does not need to rely on the
true label of the sample and the number of event classes, and
it can find the cluster combination in the detection process
faster than other external evaluation indexes. The reward
function is defined as:

r
(τ)
clu =


SS

(τ)
B

|E|(τ) − 1
/

SS
(τ)
W

N − |E|(τ)
, |E|(τ) in bounds.

0 , |E|(τ)out of bounds.
(11)

Here, SS(τ)
W is the overall within-cluster variance and SS(τ)

B
is the overall between-cluster variance in the episode τ . N
is the total number of messages. In view of the fact that CH
may be in a state of failure for extreme situations (e.g. the
CH index with the cluster number of 2 is abnormally high),
we heuristically define the acceptable number of clusters,
and give a reward value of 0 for cases that exceed the range.

Optimization. In the process of parameter adjustment,
there is a strong correlation between the states of adjacent
episodes. In order to avoid the one-sided problem of neural
network learning, we choose the Twin Delayed Deep De-
terministic policy gradient algorithm [25] to optimize one
policy network and two value networks. Among them, the
loss function of value network is expressed as follows:

Lclu = −E
[1

2

(
r
(τ)
clu+γmin Q̂

(
s
(τ+1)
clu , a

(τ+1)
clu

)
−Q

(
s
(τ)
clu, a

(τ)
clu

))2]
.

(12)
Here, E represents the process of randomly sampling the
transition tuple (s

(τ)
clu, a

(τ)
clu, r

(τ)
clu, s

(τ)
clu) from the experience

replay memory and calculating the expectation. Q is the
action value function in the current value network. min Q̂
indicates that the smallest action value in the two value
networks is selected, which is to suppress overestimation.

4.5 Cross-lingual Message Embedding Method (Crlme)
In a wider social event detection scenario, in addition to
resource-rich languages such as English, there are also some
non-English languages with insufficient original informa-
tion that cannot reuse the training process of the English
model. In order to achieve more low-resource social event
detection and reduce training costs, we directly inherit the
parameters θ preserved in English model fE training as pa-
rameters θ̄ of the non-English model fNoE when detecting
non-English events. We name this method as Crlme and for-
malize the process in Def. 2.7. Among them, the parameters
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Algorithm 1: FinEvent: Reinforced, Incremental,
and Cross-lingual Social Event Detection.

Input: A social stream S = M0,M1,M2, ..., available
labels*, window size w, the number of layers
L, and the number of mini-batches B.

Output: Sets of events: E0, E1, E2, ....
1 for t = 0, 1, 2, ... do
2 if t == 0 then
3 G ← construct initial message graph (Sec. 4.1)
4 else
5 G ← update Mt into message graph (Sec. 4.1)

6 if t! = 0 then // Detect events from Mt

7 Execute Algorithm 3

8 if t%w == 0 then // Pre-train or
maintain model

9 if t! = 0 then
10 G ← remove obsolete messages (Sec. 4.1)

11 Execute Algorithm 2

*Labels are used for pre-training and maintenance; full labeling is not
required (see Section 4.3 for details).

θ include the cognition of the semantics and structure of the
message retained through contrastive learning, the multi-
relational balance method discovered through multi-agent
reinforcement learning, and the DBSCAN clustering param-
eter adjustment ability obtained through deep reinforcement
learning. In addition, we use the LNMAP model [42] to map
a non-English message m to the English semantic space to
enhance the adaptability of English parameters.

4.6 Maintenance Strategies

1) All message strategy, keeping all the messages. In the
detection stage, we simply insert the newly arrived message
block into G. In the maintenance stage, we continue the
training process using all the messages in G. In other words,
we let FinEvent memorize all the messages it ever received.
This strategy is impractical (the messages accumulated in
G can gradually slow down the model and will eventually
exceed the embedding space capacity of the message en-
coder E) and we implement it just for comparison purposes.
2) Relevant message strategy, keeping messages that are
related to the newly arrived ones. In the detection stage,
we insert the newly arrived message block into G. In the
maintenance stage, we first remove messages that are not
connected to any messages that arrived during the last time
window and then continue training using all the messages
in G. In other words, we let FinEvent forget the messages
that are both old (i.e., arrived beyond the window) and
unrelated (to the new messages that arrived within the
window). Note that the knowledge acquired from these
messages is preserved in the form of model parameters.
3) Latest message strategy, keeping the latest message
block. In the detection stage, we use only the newly arrived
message block to reconstruct G. In the maintenance stage,
we continue training with all the messages in G, which only
involves the latest message block. In other words, we let
FinEvent forget all the messages except those in the latest

Algorithm 2: Pre-train or Maintain Model.

// MarGNN
1 for k = 1, 2, ...,K do
2 for r = 1, 2, ..., R do
3 Obtain the current state s(k)agg,r via Eq. (2)
4 Choose the action a(k)agg,r for the current state

5 for b = 1, 2, ..., B do
6 {mb} ← sample a mini-batch
7 for l = 1, 2, ..., L do
8 for r = 1, 2, ..., R do
9 Top-p sampling by using a(k)agg,r

10 Get intra-relation aggregation h(l)
mi,r

via Eq. (5), ∀mi ∈ {mb}
11 Get inter-relation aggregation h(l)

mi
via Eq.

(6), ∀mi ∈ {mb}
12 hmi

← h(L)
mi
,∀mi ∈ {mb}

// BasCL
13 Update LBasCL via Eq. (9)

14 Observe the reward r(k)agg via Eq. (3)
15 Update Lagg via Eq. (4)

Algorithm 3: Detecting Events from Mt.

// MarGNN
1 for r = 1, 2, ..., R do
2 Obtain the current state sagg,r via Eq. (2)
3 Choose the action aagg,r for the current state

4 for l = 1, 2, ..., L do
5 for r = 1, 2, ..., R do
6 Top-p sampling by using aagg.r
7 Get intra-relation aggregation h(l)

mi,r via Eq.
(5), ∀mi ∈Mt

8 Get inter-relation aggregation h(l)
mi

via Eq. (6),
∀mi ∈Mt

9 hmi
← h(L)

mi
,∀mi ∈Mt

// DRL-DBSCAN
10 for τ = 1, 2, ..., T do
11 Obtain the current state s(τ)clu via Eq. (10)
12 Choose the action a(τ)clu for the current s(τ)clu

13 Get message cluster E(τ) by using aclu
14 Observe the current reward r(τ)clu via Eq. (11)
15 Update Lclu via Eq. (12)

16 Et ← E(T )

message block. The knowledge learned from the removed
messages is memorized in the form of model parameters.

4.7 Proposed FinEvent

Algorithm 1 shows the life cycle of our proposed FinEvent.
In the life cycle, the weighted multi-relational graph is
constantly changing. Specifically, we initialize a weighted
multi-relational graph G in the pre-training stage (Line 3 in
Algorithm 1). When the new messages arrives, that is, the
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single-language detection or cross-language detection stage,
we update the graph G by inserting the new messages node
and establishing a connection (Line 5 in Algorithm 1). In
addition, we regularly delete expired nodes and edges dur-
ing the maintenance stage, and detailed three maintenance
strategies in Sec. 4.6. The neighbor selector of MarGNN
is initialized and trained in the pre-training stage, and
continues to be trained regularly in the maintenance stage
so that the neighbor selector is optimized as new messages
arrive (Line 15 in Algorithm 2). When performing model
single-language detection or cross-language detection, the
selector is not updated and directly observes the newly
arrived similarity to keep neighbors (Lines 1-3 in Algo-
rithm 3). It is worth noting that the aggregation module
will participate in the entire life cycle, whether it is pre-
training or maintenance and detecting stages (Lines 5-12
in Algorithm 2, Lines 4-9 in Algorithm 3). After MarGNN,
BasCL only appear in the training and maintenance stages
(Line 13 in Algorithm 2). In addition, the DRL-DBSCAN
part will only participate in the detection stage of the life
cycle and restart the game in every block for optimization.
In the game, DRL-DBSCAN will carry out a series of action
changes until a stable event cluster is obtained (Lines 10-15
in Algorithm 3).

5 EXPERIMENTAL SETUP

5.1 Datasets

We conduct experiments mainly on a large-scale, publicly
available dataset, i.e., Twitter dataset collected by Twitter
API to evaluate the effectiveness of streaming social event
detection for it consists of multiple message blocks with
continuous timestamps. After filtering out repeated and
irretrievable tweets, the Twitter dataset entirely contains
68,841 manually labeled tweets related to 503 event classes,
respectively, spread over about 4 weeks (a period of 29
days). To conduct the cross-lingual experiment, we addition-
ally collect French Twitter dataset containing 64,516 labeled
tweets related to 257 event classes and spread over about
3 weeks (a period of 23 days). Furthermore, we set three
relations, involving M-U-M (message-user-message), M-L-
M (message-location-message) and M-E-M (message-entity-
message), as the meta-path schema for weighted multi-
relational graph. For incremental detection, We split the
Twitter dataset by date to construct a social stream. Specif-
ically, we use the messages of the first week to form an
initial message block M0 and the messages of the remaining
days to form the following message blocks M1,M2, ...,M21.
Appendix C shows the statistics of the resulting social
stream, containing the total number of messages and event
classes for each block. Fig. 3 visualizes the distribution of
events for both datasets, which follow a long-tail trend, and
the message count belonging to each event is extremely im-
balanced. A few events are associated with a large quantity
of messages while a large fraction of events is associated
with a small quantity of messages. The possible reason is
preferential attachment in the social network. In such a
situation, learning event detectors for small samples is much
more difficult due to the poor generalizability caused by
insufficient training instances, especially in social streams.
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(a) English Twitter Dataset statistics.
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(b) French Twitter Dataset statistics.

Fig. 3: Long-tailed distribution and data imbalance chal-
lenge in social stream. The curve and bar indicate the
density and count of messages in one event, respectively.
The order of magnitude of message count is 103.

5.2 Baselines

We compare FinEvent to general message representation
learning and similarity measuring methods, offline so-
cial event methods, incremental methods, and the original
KPGNN. The baselines are: Word2vec [43], which uses the
average of the pre-trained Word2vec embeddings of all the
words in a message as its representation; LDA [44], a gen-
erative statistical model that learns message representations
by modeling the underlying topic and word distributions;
WMD [45], which measures the dissimilarity between two
messages by calculating the minimum distance that the
word embeddings in one need to travel to reach that of
the other; BERT [46], which uses the average of BERT
embeddings of all the words in a message as its represen-
tation; BiLSTM [47], which learns bidirectional long-term
dependencies between words in a message; PP-GCN [9],
an offline fine-grained social event detection method based
on GCN [48]; EventX [14], a fine-grained event detection
method based on community detection and is applicable
to the online scenario. KPGNN, a knowledge-preserving
incremental heterogeneous graph neural network model for
streaming social event detection; KPGNNt, in which the
global-local pair loss term Lp is removed from the loss
function and only the triplet loss term Lt is used. FinEventk,
only implements K-Means for clustering the final embed-
dings.

5.3 Experiment Setting

For the proposed FinEvent, we set the number of attention
heads for the intra-relation aggregation in MarGNN to 4,
the embedding dimension to 64, the total number of layers
to 2, the learning rate to 0.001, the optimizer to Adam,
the training epochs to 100 with the patience of 5 for early
stopping, and selecting the best model for inference. BiL-
STM and other GNN-based baselines use basically the same
configuration as above except for setting the dimension to
32. In addition, we set the total number of topics to 50 for
LDA, and adopt the hyperparameters as suggested in the
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original paper [14] for EventX. For maintenance strategy
and BasCL, we set the triple margin a to 3, use mini-batch
sampling with the size 2000 to improve training efficiency,
adopt the latest message strategy and maintenance window
size 3 (KPGNN and KPGNNt also use these). For the
multi-agent reinforcement learning algorithm Actor-critic of
MarGNN, we use the discrete action space with the step size
of 0.01 in the range of [0, 1] to each preserving threshold,
and initialize the optimal threshold of each relation to 1.0.
For the deep reinforcement learning algorithm TD3 of DRL-
DBSCAN, we set the continuous action spaces with the
range of [−5, 5], the value range of Eps to (0, 10], the
cluster boundary of [15, 100], the batch size to 32, and the
perplexity of dimensionality reduction to 40. Among them,
the initial parameter is the midpoint of the action space.
We repeat all experiments 5 times and report the mean and
standard variance of the results. Note that KPGNN and
FinEvent do not require pre-defining the total number of
event classes, but some of the baselines (Word2vec, LDA,
WMD, BERT, and BiLSTM) do. To get a fair comparison,
after obtaining the message similarity matrix from WMD
and message representations from the other models except
for EventX (EventX does not pre-define its total number
of detected classes), we leverage Spectral and K-Means
clustering, respectively, and set the total number of classes to
the number of grounded-truth classes. Otherwise, FinEvent
is designed for a previously unknown number of classes
in the case of incremental detection. Hence we additionally
analyze the self-adaptive DRL-DBSCAN clustering module
at length to demonstrate our advantage. The complete ar-
chitecture in the experiment is named as FinEventd to be
easily distinguished.

5.4 Implementation.
For Word2vec, we use the pre-trained 300-d GloVe [49]
vectors. For LDA, WMD, BERT, PP-GCN, and KPGNN
(KPGNNt), we use the open-source implementations 6,7,8.
We implement EventX with Python 3.7.3, BiLSTM and Fin-
Event with Pytorch 1.8.1. All experiments are conducted on
a 64 core Intel Xeon CPU E5-2680 v4@2.40GHz with 512GB
RAM and 1×NVIDIA Tesla P100-PICE GPU.

5.5 Evaluation Metrics
To evaluate the performance of all models, we measure
the similarities between their detected message clusters and
the ground-truth clusters. We utilize normalized mutual
information (NMI) [50], adjusted mutual information (AMI)
[51], and adjusted rand index (ARI) [51]. NMI measures the
amount of information one can extract from the distribution
of the predictions regarding the distribution of the ground-
truth labels and is broadly adopted in social event detection
method evaluations [9], [14]. AMI, similar to NMI, also
measures the mutual information between two clusters but
is adjusted to account for chance [51]. ARI considers all
prediction-label pairs and counts pairs that are assigned in
the same or different clusters, and ARI also accounts for
chance [51].

6. https://github.com/huggingface/transformers
7. https://github.com/RingBDStack/PPGCN
8. https://github.com/RingBDStack/KPGNN

6 EVALUATION

In this section, we first compare FinEvent to different base-
lines including offline as well as incremental social event
detection models. We further investigate the effects and
stability of reinforcement learning guided multi-relational
GNN. Then, we give the cross-lingual transferring evalua-
tion. Lastly, we provide a time complexity analysis for the
FinEvent.

6.1 Offline Evaluation

In this section, we compare the preliminary model KPGNN
and improved version FinEvent to the baselines in an offline
scenario. For both datasets, we randomly sample 70%, 20%,
and 10% for training, test, and validation, as such partitions
are commonly adopted by GNN studies [9]. To ensure con-
sistency, we compare FinEventk with other baselines which
implement K-Means for clustering.

Table 2 summarizes the offline evaluation results.
FinEventk outperforms general message embedding meth-
ods (Word2vec, LDA, BERT, and BiLSTM), similarity mea-
suring methods (WMD) by large margins in all metrics
(8%-172%, 24%-1, 450%, and 20%-2, 300% in NMI, AMI,
and ARI on the Twitter dataset). The reason for this is
that these methods rely either on measuring the distribu-
tions of messages’ elements (LDA) or message embeddings
(Word2vec, WMD, BERT, and BiLSTM), and they all ignore
the underlying social graph structure. Note that although
PP-GCN shows strong performance, it assumes a stationary
graph structure and cannot adapt to dynamic social streams.
FinEventk, on the contrary, is capable of continuously adapt-
ing to and extending its knowledge from the incoming
messages (empirically verified in Section 6.2). KPGNN also
outperforms both PP-GCN and KPGNNt, which implies
the advantage of Lp. EventX shows the highest metric
score on NMI among other baselines but much lower com-
pared to KPGNN and FinEventk. This suggests that EventX
tends to generate a larger number of clusters, regardless of
whether there is actually more information captured, while
FinEventk are stronger in general. FinEventk outperforms
its original version KPGNN. The improvement is attributed
to the multi-agent guided aggregation in multi-relational
GNN. It is capable of adaptively filtering noise (i.e. irrele-
vant messages but accidentally linked for both mentioning
the same location) and capturing the contributed neighbors.
Lastly, FinEventd outperforms FinEventk by 10% in NMI,
11% in AMI and 100% in ARI. It demonstrates the great
power of DRL-DBSCAN in offline detection tasks. To con-
clude, FinEvent significantly outperforms other baselines by
11% in NMI, 38% in AMI, and 140% in ARI.

6.2 Incremental Evaluation

This subsection evaluates FinEvent in an incremental detec-
tion scenario. Tables 3, 4 and 5 summarize the incremental
social event detection results in NMI, AMI, and ARI, respec-
tively. Note that PP-GCN, as an offline baseline, cannot be
directly applied to the dynamic social streams and we mit-
igate this by retraining a new PP-GCN model from scratch
for each message block (i.e., use the previous blocks as the
training set and predict on the current block). For FinEvent,

https://github.com/huggingface/transformers
https://github.com/RingBDStack/PPGCN
https://github.com/RingBDStack/KPGNN
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TABLE 2: Offline evaluation results on the Twitter dataset. The best results are marked in bold.
Metrics Word2vec LDA WMD BERT BiLSTM PP-GCN EventX KPGNNt KPGNN FinEventk FinEventd

NMI .44±.00 .29±.00 .65±.00 .64±.00 .63±.00 .68±.02 .72±.00 .69±.01 .70±.01 .79±.01 .80±.01 ↑ .08
AMI .13±.00 .04±.00 .50±.00 .44±.00 .41±.00 .50±.02 .19±.00 .51±.00 .52±.01 .62±.01 .69±.01 ↑ .19
ARI .02±.00 .01±.00 .06±.00 .07±.00 .17±.00 .20±.01 .05±.00 .21±.01 .22±.01 .24±.01 .48±.01 ↑ .28

TABLE 3: Incremental evaluation NMIs. The best results are marked in bold and second-best in italic.
Blocks Word2vec LDA WMD BERT BiLSTM PP-GCN EventX KPGNNt KPGNN FinEventk FinEventd

M1 .19±.00 .11±.00 .32±.00 .36±.00 .24±.00 .23±.00 .36±.00 .38±.01 .39±.00 .38±.01 .84±.01 ↑ .49
M2 .50±.00 .27±.01 .71±.00 .78±.00 .50±.00 .57±.02 .68±.00 .78±.01 .79±.01 .81±.00 .84±.01 ↑ .06
M3 .39±.00 .28±.00 .67±.00 .75±.00 .39±.00 .55±.01 .63±.00 .77±.00 .76±.00 .83±.00 .89±.00 ↑ .14
M4 .34±.00 .25±.00 .50±.00 .60±.00 .40±.00 .46±.01 .63±.00 .68±.01 .67±.00 .71±.01 .71±.01 ↑ .08
M5 .41±.00 .26±.00 .61±.00 .72±.00 .41±.00 .48±.01 .59±.00 .73±.01 .73±.01 .76±.00 .83±.00 ↑ .11
M6 .53±.00 .32±.00 .61±.00 .78±.00 .50±.00 .57±.01 .70±.00 .81±.00 .82±.01 .84±.00 .83±.00 ↑ .06
M7 .25±.00 .18±.01 .46±.00 .54±.00 .33±.00 .37±.00 .51±.00 .54±.01 .55±.01 .56±.00 .73±.01 ↑ .02
M8 .46±.00 .37±.01 .67±.00 .79±.00 .49±.00 .55±.02 .71±.00 .79±.01 .80±.00 .87±.01 .87±.02 ↑ .08
M9 .35±.00 .34±.00 .55±.00 .70±.00 .43±.00 .51±.02 .67±.00 .74±.01 .74±.02 .78±.02 .79±.01 ↑ .09
M10 .51±.00 .44±.01 .61±.00 .74±.00 .50±.00 .55±.02 .68±.00 .79±.01 .80±.01 .81±.01 .82±.01 ↑ .08
M11 .37±.00 .33±.01 .50±.00 .68±.00 .49±.00 .50±.01 .65±.00 .73±.00 .74±.01 .76±.00 .75±.00 ↑ .08
M12 .30±.00 .22±.01 .60±.00 .59±.00 .39±.00 .45±.01 .61±.00 .69±.01 .68±.01 .76±.01 .67±.01 ↑ .15
M13 .37±.00 .27±.00 .54±.00 .63±.00 .46±.00 .47±.01 .58±.00 .68±.01 .69±.01 .67±.00 .79±.00 ↑ .18
M14 .36±.00 .21±.00 .66±.00 .64±.00 .44±.00 .44±.01 .57±.00 .68±.01 .69±.00 .74±.00 .82±.00 ↑ .16
M15 .27±.00 .21±.00 .51±.00 .54±.00 .40±.00 .39±.01 .49±.00 .57±.01 .58±.00 .64±.00 .69±.01 ↑ .15
M16 .49±.00 .35±.01 .60±.00 .75±.00 .53±.00 .55±.01 .62±.00 .78±.01 .79±.01 .80±.00 .90±.01 ↑ .15
M17 .33±.00 .19±.00 .55±.00 .63±.00 .45±.00 .48±.00 .58±.00 .69±.01 .70±.01 .73±.00 .83±.00 ↑ .20
M18 .29±.00 .18±.00 .63±.00 .57±.00 .44±.00 .47±.01 .59±.00 .68±.01 .68±.02 .72±.01 .74±.01 ↑ .11
M19 .37±.00 .29±.01 .54±.00 .66±.00 .44±.00 .51±.02 .60±.00 .73±.00 .73±.01 .76±.02 .66±.01 ↑ .10
M20 .38±.00 .35±.00 .58±.00 .68±.00 .48±.00 .51±.01 .67±.00 .73±.00 .72±.02 .73±.00 .80±.00 ↑ .12
M21 .31±.00 .19±.00 .58±.00 .59±.00 .41±.00 .41±.02 .53±.00 .59±.01 .60±.00 .65±.01 .74±.01 ↑ .15

TABLE 4: Incremental evaluation AMIs. The best results are marked in bold and second-best in italic.
Blocks Word2vec LDA WMD BERT BiLSTM PP-GCN EventX KPGNNt KPGNN FinEventk FinEventd

M1 .08±.00 .08±.00 .30±.00 .34±.00 .12±.00 .21±.00 .06±.00 .36±.01 .37±.00 .36±.01 .84±.01 ↑ .50
M2 .41±.00 .20±.01 .69±.00 .76±.00 .41±.00 .55±.02 .29±.02 .77±.01 .78±.01 .77±.00 .84±.01 ↑ .08
M3 .31±.00 .22±.01 .63±.00 .73±.00 .31±.00 .52±.01 .18±.01 .75±.00 .74±.00 .82±.01 .89±.01 ↑ .16
M4 .24±.00 .17±.00 .45±.00 .55±.00 .30±.00 .42±.01 .19±.01 .65±.01 .64±.01 .67±.02 .69±.00 ↑ .14
M5 .33±.00 .21±.00 .57±.00 .71±.00 .33±.00 .46±.01 .14±.00 .71±.01 .71±.01 .74±.00 .82±.00 ↑ .11
M6 .40±.00 .20±.00 .57±.00 .74±.00 .36±.00 .52±.02 .27±.00 .78±.00 .79±.01 .81±.00 .82±.02 ↑ .08
M7 .13±.00 .12±.01 .46±.00 .50±.00 .20±.00 .34±.00 .13±.00 .50±.01 .51±.01 .53±.00 .72±.00 ↑ .22
M8 .33±.00 .24±.01 .63±.00 .75±.00 .35±.00 .49±.02 .21±.00 .75±.01 .76±.01 .84±.01 .87±.01 ↑ .12
M9 .24±.00 .24±.00 .46±.00 .66±.00 .32±.00 .46±.02 .19±.00 .70±.01 .71±.02 .75±.00 .78±.01 ↑ .12
M10 .39±.00 .36±.01 .57±.00 .70±.00 .39±.00 .51±.02 .24±.00 .76±.01 .78±.01 .78±.00 .81±.00 ↑ .11
M11 .26±.00 .25±.01 .42±.00 .65±.00 .37±.00 .46±.01 .24±.00 .70±.00 .71±.01 .73±.00 .74±.00 ↑ .09
M12 .23±.00 .16±.01 .58±.00 .56±.00 .32±.00 .42±.01 .16±.00 .66±.01 .66±.01 .75±.01 .67±.02 ↑ .17
M13 .23±.00 .19±.00 .50±.00 .59±.00 .31±.00 .43±.01 .16±.00 .65±.01 .67±.01 .64±.00 .79±.00 ↑ .20
M14 .26±.00 .15±.00 .64±.00 .61±.00 .34±.00 .41±.01 .14±.00 .65±.01 .65±.00 .72±.00 .82±.01 ↑ .18
M15 .15±.00 .13±.00 .47±.00 .50±.00 .26±.00 .35±.01 .07±.00 .53±.01 .54±.00 .61±.00 .67±.01 ↑ .17
M16 .36±.00 .27±.01 .59±.00 .72±.00 .41±.00 .52±.01 .19±.00 .75±.01 .77±.01 .75±.01 .90±.01 ↑ .20
M17 .24±.00 .13±.00 .57±.00 .60±.00 .35±.00 .45±.00 .18±.00 .67±.01 .68±.01 .71±.02 .82±.01 ↑ .22
M18 .21±.00 .12±.00 .60±.00 .53±.00 .35±.00 .45±.01 .16±.00 .66±.01 .66±.02 .70±.00 .74±.00 ↑ .14
M19 .28±.00 .22±.01 .49±.00 .63±.00 .35±.00 .48±.02 .16±.00 .70±.00 .71±.01 .75±.01 .66±.00 ↑ .12
M20 .24±.00 .23±.00 .55±.00 .62±.00 .34±.00 .45±.02 .18±.00 .68±.00 .68±.02 .68±.00 .78±.00 ↑ .16
M21 .21±.00 .13±.00 .52±.00 .57±.00 .31±.00 .38±.02 .10±.00 .57±.01 .57±.00 .63±.01 .64±.01 ↑ .07

preserving thresholds will be initialized at every beginning
of the maintenance stage. To ensure consistency, we compare
FinEventk with other baselines which implement K-Means
for clustering.

Both KPGNN and FinEventk significantly and consis-
tently outperform the baselines for all message blocks. They
gain over EventX by 8%-32% (21% on average) in NMI,
169%-771% (345% on average) in AMI, and 69%-1782%
(560% on average) in ARI. The reason is, EventX relies solely
on community detection, while FinEventk incorporates the
semantics of the social messages. They outperform WMD
by 12%-52% (28% on average) in NMI, 11%-63% (29% on
average) in AMI, and 0%-266% (110% on average) in ARI
and over BERT by up to 3%-28% (11% on average) in NMI,

up to 1%-33% (13% on average) in AMI, and up to 0%-
83% (39% on average) in ARI. This is because our designs
are capable of leveraging the structural information of the
social stream, which is ignored by WMD and BERT. They
also outperform PP-GCN by 42%-65% (53% on average) in
NMI, 48%-117% (62% on average) in AMI, and 0%-51%
(15% on average) in ARI. This suggests that our designs
effectively preserve up-to-date knowledge, while PP-GCN
can be distracted by obsolete information as the messages
accumulate.

FinEventk outperforms KPGNN and KPGNNt for the
overwhelming majority of message blocks in NMI and AMI.
The improvements testify to the impression of weighted
multi-relational graph structure and positive effects of
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TABLE 5: Incremental evaluation ARIs. The best results are marked in bold and second-best in italic.
Blocks Word2vec LDA WMD BERT BiLSTM PP-GCN EventX KPGNNt KPGNN FinEventk FinEventd

M1 .01±.00 .01±.00 .04±.00 .03±.00 .03±.00 .05±.00 .01±.00 .06±.01 .07±.01 .05±.00 .90±.00 ↑ .85
M2 .49±.00 .08±.00 .48±.00 .64±.00 .49±.00 .67±.03 .45±.02 .76±.01 .76±.02 .67±.01 .90±.01 ↑ .23
M3 .16±.00 .02±.01 .28±.00 .43±.00 .17±.00 .47±.01 .09±.01 .60±.02 .58±.01 .58±.00 .89±.01 ↑ .42
M4 .07±.00 .07±.00 .11±.00 .19±.00 .11±.00 .24±.01 .07±.01 .30±.01 .29±.01 .27±.02 .27±.01 ↑ .06
M5 .17±.00 .06±.00 .26±.00 .44±.00 .19±.00 .34±.00 .04±.00 .48±.01 .47±.03 .43±.01 .63±.02 ↑ .19
M6 .25±.00 .07±.01 .16±.00 .44±.00 .18±.00 .55±.03 .14±.00 .67±.05 .72±.03 .65±.00 .74±.00 ↑ .19
M7 .02±.00 .01±.00 .08±.00 .07±.00 .08±.00 .11±.02 .02±.00 .11±.01 .12±.00 .09±.01 .45±.01 ↑ .34
M8 .17±.00 .03±.00 .22±.00 .50±.00 .08±.00 .43±.04 .09±.00 .59±.02 .60±.01 .65±.02 .72±.01 ↑ .22
M9 .08±.00 .03±.01 .12±.00 .33±.00 .27±.00 .31±.02 .07±.00 .45±.02 .46±.02 .43±.00 .68±.00 ↑ .35
M10 .23±.00 .09±.02 .20±.00 .44±.00 .22±.00 .50±.07 .13±.00 .64±.01 .70±.06 .62±.02 .74±.01 ↑ .24
M11 .09±.00 .03±.01 .12±.00 .27±.00 .17±.00 .38±.02 .16±.00 .48±.01 .49±.03 .42±.01 .60±.01 ↑ .22
M12 .09±.00 .02±.01 .27±.00 .31±.00 .13±.00 .34±.03 .07±.00 .50±.03 .48±.01 .44±.00 .26±.00 ↑ .16
M13 .06±.00 .01±.00 .13±.00 .14±.00 .13±.00 .19±.01 .04±.00 .28±.01 .29±.03 .21±.02 .75±.02 ↑ .56
M14 .10±.00 .02±.00 .33±.00 .30±.00 .16±.00 .29±.01 .10±.00 .43±.02 .42±.02 .43±.01 .81±.01 ↑ .48
M15 .09±.00 .01±.00 .16±.00 .10±.00 .14±.00 .15±.00 .01±.00 .16±.02 .17±.00 .16±.00 .46±.00 ↑ .31
M16 .10±.00 .11±.01 .32±.00 .41±.00 .10±.00 .51±.03 .08±.00 .62±.03 .66±.05 .56±.01 .88±.01 ↑ .37
M17 .06±.00 .02±.00 .26±.00 .24±.00 .17±.00 .35±.03 .12±.00 .41±.03 .43±.05 .36±.01 .81±.01 ↑ .46
M18 .21±.00 .02±.00 .35±.00 .24±.00 .19±.00 .39±.03 .08±.00 .46±.02 .47±.04 .44±.01 .52±.01 ↑ .13
M19 .28±.00 .03±.00 .12±.00 .32±.00 .16±.00 .41±.02 .07±.00 .50±.01 .51±.03 .44±.00 .35±.01 ↑ .10
M20 .24±.00 .02±.01 .19±.00 .33±.00 .20±.00 .41±.01 .11±.00 .51±.01 .51±.04 .43±.02 .71±.01 ↑ .30
M21 .21±.00 .01±.01 .19±.00 .18±.00 .16±.00 .20±.03 .01±.00 .23±.02 .20±.01 .23±.00 .48±.00 ↑ .27

TABLE 6: Ablation study for neighbor sampler strategy, Intra-relation Aggregation AGGintra and Inter-relation
Aggregation AGGinter . The best results are marked in bold and second-best in italic.

Neighbor Sampling Strategy Cluster Type Intra-relation Aggregator Threshold Inter-relation Aggregator Avg. Metrics

Random Constant Reinforced Shared-GNN RNN Cat. Sum MLP NMI AMI ARI

1 - - X DBSCAN - - X X - - 0.788 0.777 0.645
2 - - X K-Means - - X X - - 0.727 0.702 0.443
3 - X - K-Means - - - - - - 0.698 0.671 0.448

4 - top 50% - K-Means - - - X - - 0.719 0.699 0.441
5 - bottom 50% - K-Means - - - X - - 0.698 0.670 0.427
6 X - - K-Means - - - X - - 0.718 0.694 0.437
7 - X - K-Means - - - X - - 0.722 0.696 0.442

8 - - X K-Means X - X X - - 0.700 0.673 0.416
9 - - - K-Means - X - - - - 0.449 0.324 0.168

10 - - X K-Means - - - X - - 0.723 0.697 0.438
11 - - X K-Means - - X - X - 0.702 0.674 0.425
12 - - X K-Means - - - - X - 0.700 0.672 0.422
13 - - X K-Means - - X X - X 0.653 0.620 0.383
14 - - X K-Means - - - X - X 0.645 0.610 0.368

multi-agent guided aggregation, which incorporates more
relational information and greatly enhances both intra- and
inter-aggregation. The reason for the decrease of ARI is
that the ARI metric prefers to measure the performance
when events have equal-sized clustering, but the ground
truth events clustering in our experiment are unbalanced
(as shown in Fig. 3). And this also explains the increase
of FinEventk in AMI for it prefers unbalanced clusters
instead. The use of MarGNN and DRL-DBSCAN improve
the clustering accuracy but might intensify the effect of
event imbalance brought by a social stream at the same
time. To conclude, the performance of FinEventk is superior
to the baselines. Lastly, FinEventd significantly outperforms
FinEventk by 0%−1210% in NMI, 0%−1330% in AMI, and
0%−1700% in ARI. The improvements are attributed to the
well-designed DRL-DBSCAN, testifying DRL-DBSCAN not
only breaks through the limitation of K-Means in stream
clustering, but achieves greater performance with deep rein-
forcement learning agents as well. What’s more, FinEventd
has significant performance on ARI, which makes up the
limitation of K-Means on clustering unbalanced events.

Overall, FinEvent significantly outperforms other base-

lines by 8% − 136% in NMI, 11% − 147% in AMI, and
24%− 170% in ARI on the incremental detection scenario.
Ablation Study. To evaluate the effectiveness of MarGNN,
we conduct an ablation study on the process of AGGintra
and AGGinter respectively, denoted as the intra-relation ag-
gregator and intra-relation aggregator. For the intra-relation
aggregator, we design (a) shared-GNN, which only lever-
ages one sole GNN to learn information from all relational
graphs; and (b) RNN, which substitutes GNNs with RNNs.
To avoid the impacts of parameters selection in DBSCAN,
we implement K-Means for all variants. It is shown in Table
6 that compared with shared-GNN, MarGNN outperforms
by 3.9% in NMI, 4.6% in AMI. Moreover, MarGNN and
shared-GNN outperform KPGNN by 6.5% in ARI, 4.2% in
NMI and 4.6% in AMI, 6.5% in ARI, 0.3% in NMI and 0.2%
in AMI, respectively. It demonstrates that integrating the
distinct information from multi-relational graphs is crucial
in social event detection because the types and schema of
events should be fully considered. MarGNN and KPGNN
outperform the RNN family by 61.9% in NMI, 116.7%
in AMI, and 163.7% in ARI, 55.5% in NMI, 107.1% in
AMI, and 116.7% in ARI, respectively. The advantages can
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(a) Word2Vec (M3). (b) Bert (M3). (c) PP-GCN (M3). (d) KPGNN (M3). (e) FinEvent (M3).

(f) Word2Vec (M14). (g) Bert (M14). (h) PP-GCN (M14). (i) KPGNN (M14). (j) FinEvent (M14).

(k) Word2Vec (M18). (l) Bert (M18). (m) PP-GCN (M18). (n) KPGNN (M18). (o) FinEvent (M18).

Fig. 4: Cluster visualization of message representations in the detection stage.

be attributed to the graph modeling of social messages.
Compared with the GNN-based model, RNNs neglect the
structural information in social streams.

For the inter-relation aggregator, we conduct different
combination strategies: concatenation (Cat.), Sum and MLP
mentioned in Section 4.2.2. The output dimension of GNNs
and MLPs is set to 64. It is shown in Table 6 that the
concatenation operation could boost the performance of
MarGNN over sum by 3.6% in NMI, 4.2% in AMI and
4.2% in ARI and MLP by 11.3% in NMI, 13.2% in AMI and
15.7% in ARI. It is attributed to that the direct concatenation
operation can best preserve the knowledge and structural
information among relations from social streams.
Visualization Analysis. To better measure the effect of Fin-
Event, we report the dimensionality reduction visualization
of the information representation of specific blocks, i.e., M3,
M14 and M18 in detection stages as Fig. 4. In these figures,
we focus on the top 7 events by volume due to the long-tail
challenge of social data (Fig. 3). The representations of the
messages belonging to the same event are marked with the
same color. Comparing Column 1, 2 to Column 3, 4 and 5
in Fig. 4, it is observed that clustering results of GNN-based
methods are more compact than those merely depending
on representations. It demonstrates the advantages of intro-
ducing GNNs to event detection. Furthermore, for internal
comparison among PP-GCN, KPGNN, and FinEvent, ob-
viously FinEvent achieves better performance. This shows
that the architecture of FinEvent combined with different
RL modules can be well adapted to the incremental event

detection.

6.3 Study on RL process

In this section, we focus on the reinforcement learning pro-
cess in FinEvent, including multi-agent RL guided optimal
preserving threshold selection and aggregation, as well as
DRL guided DBSCAN, respectively.

6.3.1 Preserving thresholds
As shown in Fig. 5, we concatenate all the epochs in the
training process, containing 1 pre-training stage (from epoch
0 to epoch 50) and 7 maintenance stages (from epoch 50
to epoch 340), and visualize the changes of preserving
thresholds under each relation. It can be observed that each
preserving threshold gradually converges to a fixed value
after oscillating in several epochs. The multi-agents steadily
learn from graph structures until all preserving thresholds
reach the terminal conditions.

We further conduct an ablation study on reinforced
neighbor selection. Firstly, we verify the effectiveness of
neighbor selection. Concretely, we select the top 50% and
bottom 50% number of neighbors for every target node in
terms of their representation distance (Section 4.2.1). We take
the average of the NMI, AMI, and ARI results of 21 blocks.
As shown in Table 6, the selection of top 50% neighbors
achieves better results compared with the selection of bot-
tom 50% neighbors by 3.0% in NMI, 4.3% in AMI, and 3.3%
in ARI. It testifies that some messages or users are indeed
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Fig. 5: Multi-agent reinforcement learning process in the online maintenance stage. We summarize the epochs of all
time periods. Note that each process from fluctuation to stability is a pre-training or maintenance stage. The figure contains
a total of one pre-training process and seven maintenance processes.
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(a) DBSCAN parameters.
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Fig. 6: Deep reinforcement learning process in the online detection stage. We show the DRL-DBSCAN parameter
adjustment and NMI change process of block M7 as an example of DRL-DBSCAN, where the green marked points
represents the final convergence parameter.

noise in the social network, which would harm the perfor-
mance of GNNs and are urgent to be filtered. Secondly, we
discuss different neighbor sampling strategies to verify the
effectiveness of Top-p neighbor sampling guided by multi-
agent. In addition to the proposed reinforced strategy, we
set i). a constant number of neighbors for every target node,
as we leverage 2-layer GNNs, the sizes are set to 25 for the
first hop and 15 for the second hop recommended by [52];
ii). random number of neighbors, the number of neighbors
for the first hop is randomly selected in the range of 10
to 100 and 10 to 50 for the second hop. It is shown in
Table 6 that the reinforced sampling strategy performs better
than random sampling strategy by 1.3% in NMI, 1.2% in
AMI, and 1.4% in ARI, and constant sampling strategy by
0.7% in NMI, 0.9% in AMI, and 0.2% in ARI. It verifies
the effectiveness of the optimal preserving thresholds. The
values of elaborate optimal preserving thresholds guided
by multi-agents in the detection stage are shown in Table
7. Instead of manually fixing the thresholds, multi-agents
are capable of using their experience learning from block
features, e.g., information and relation structure, to select
the optimal preserving thresholds in the detection stage
adaptively. We further evaluate the advantages of optimal
preserving thresholds in the inter-relation aggregation pro-
cess. As shown in Table 6, the proposed optimal preserving
thresholds can improve the performance on inter-aggregator

by 0.6% in NMI, 0.7% in AMI and 1.1% in ARI for con-
catenation, 0.3% in NMI, 0.3% in AMI and 0.7% in ARI
for sum, and 1.2% in NMI, 1.6% in AMI and 4.0% in
ARI for MLP. This provides a significant explanation for
our assumption of the importance of noise and relation
described in Section 4.2.2, that is, the relation with too much
noise contributes less to aggregation.

TABLE 7: Preserving thresholds in the detection stage.
Blocks M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M-U-M – .88 .24 .98 .24 .50 .40 .40 .12 .06 .96
M-E-M – .82 .56 .22 .20 .88 .90 .74 .20 .28 .50
M-L-M – .96 .08 .80 .54 .42 .78 .80 .56 .70 .86

Blocks M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

M-U-M .22 .94 .22 .14 .10 .46 .44 .24 .10 .32 .38
M-E-M .66 .72 .24 .60 .76 .82 .90 .90 .20 .10 .34
M-L-M .74 .64 .20 .98 .54 .18 .50 .46 .24 .16 .92

TABLE 8: DBSCAN parameters in the detection stage.

Blocks M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

ε – 3.87 3.29 2.57 3.25 3.24 3.70 2.35 2.95 3.39 3.57

Blocks M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

ε 3.19 3.28 3.76 3.93 2.00 3.37 3.54 3.23 4.00 2.23 3.18
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6.3.2 DRL-DBSCAN
Stationary analysis. In the detection stage, each block cre-
ates a brand new clustering scene for DRL-DBSCAN, so
the deep reinforcement learning agent restarts the game
process every block. Fig. 6 shows the DBSCAN parameters
adjustment learning process in one block taking the rein-
forcement learning process during block M7 as an example.
We observe that parameter ε in Fig. 6(a) fluctuate contin-
uously throughout the action space and stabilize in the
range 3-4 starting from episode 200. This process embodies
the process of the reinforcement learning agent gaining
parameter adjustment experience in the interaction with the
environment. Furthermore, every time period of detection,
DRL-DBSCAN is used to detect a completely new block of
messages. We give the parameter combinations predicted
by DRL-DBSCAN in all detection stages in Table 8. It can be
seen that the final parameter result fluctuates with different
message blocks.
Effectiveness analysis. In order to evaluate the incentive
ability of the reward function in Eq. 11, we measure the rev-
enue of all reinforcement learning parameter search games
(only block M7 is shown as an example). Fig. 6(b) shows the
DBSCAN NMI changes using our DRL-DBSCAN and K-
Means NMI changes using the known number of events. It
is worth noting that after the interaction of multiple episode
parameters in Fig. 6(a), the final convergence NMI of DRL-
DBSCAN exceeds K-Means, which shows that the heuristic
external indicator reward function can effectively stimulate
the parameters to higher levels. Note that the reward of K-
Means remains unchanged because the event distribution
and message representation of the same epoch are fixed. In
addition, the complete measurement results corresponding
to the final parameters of the different message blocks in
Table 8 are shown in Table 3, Table 4, and Table 5. By
comparing with K-Means, it is found that our model has
a stable advantage in different blocks.

6.4 Cross-lingual Transferring Evaluation

As described in Section 3.3, due to the advantage of Fin-
Event in preserving and extending knowledge, we leverage
such inductive learning ability to resolve the cross-lingual
transferring problem. Generally, a well-trained model on
high-resource English dataset is transferred to low-resource
non-English datasets, which are fine-tuned with little train-
ing samples, and directly used to detect the incoming
events. We treat the English Twitter dataset as a high-
resource dataset to pre-train FinEvent, and apply it to
achieve cross-lingual detection on French Twitter dataset,
which plays a role in low-resource Twitter dataset. It is
noted that these two datasets are thoroughly different,
which own respective timestamps and event types (though
part of the event is plotted in Fig. 3 are repetitive, there
are totally different events). In our experiment, we directly
calculate the document features of French messages, and
Google Translate to firstly translate French messages and
then obtain the node features.

To verify our assumption on cross-lingual detection,
we compare the performance of FinEvent in two differ-
ent situations: (a) we train a new FinEvent detector on
both processed French dataset, named FinEventr(Raw) and

TABLE 9: Cross-lingual transferring evaluation on French
dataset. The best results are marked in bold.

Blocks M0 M1 M2 M3 M4 M5 M6 M7

FinEventr – .575 .620 .577 .512 .556 .488 .584
FinEventcr – .576 .578 .580 .534 .633 .656 .615

FinEventg – .592 .574 .591 .474 .568 .511 .580
FinEventcg – .578 .575 .604 .542 .641 .659 .600

Blocks M8 M9 M10 M11 M12 M13 M14 M15

FinEventr .640 .484 .627 .529 .545 .472 .519 .586
FinEventcr .612 .523 .597 .610 .616 .569 .622 .630

FinEventg .625 .484 .623 .546 .548 .474 .530 .591
FinEventcg .598 .512 .599 .584 .610 .563 .640 .626

FinEventg(Google Translated). Settings and maintenance
strategy remain the same; (b) we fine-tune the well-trained
FinEvent from English dataset with the initial M0 in French
datasets, named FinEventcr and FinEventcg respectively,
and keep them in the detection stage so as to continuously
detect events from the transferred French dataset. We report
NMIs results as the performances of them in Table 9. All
clustering types of FinEvent are set to K-Means to avoid
the impacts of distinct parameters selection in DBSCAN.
It is observed that the performances of FinEventcr and
FinEventcg are better than FinEventr and FinEventg . Con-
cretely, among 15 blocks, FinEventcr takes the lead in 12
blocks compared with FinEventr and achieves improvement
in the range of 1.7% to 20.6%. FinEventcg also outper-
forms FinEventg in 12 blocks and achieves improvement
in the range of 1.7% to 20.8%. The block-wise average
NMIs of FinEventr and FinEventcr are 0.554 and 0.597,
respectively. The block-wise average NMIs of FinEventg
and FinEventcg are 0.554 and 0.595, respectively. The fea-
sibility of FinEventcr and FinEventcg demonstrates that the
knowledge preserved in FinEvent trained on high-resource
English dataset can be extended and guide the event de-
tection on low-resource non-English datasets. In addition,
the similar performances of FinEventr and FinEventg also
give us insights that despite different language expressions
of messages, the semantic and structure of message graphs
are more crucial in event detection.

6.5 Time Analysis
In this section, we will analyze the time complexity and
consumption of the online maintenance stage to explore the
practicality of FinEvent. The overall running time of Fin-
Event is O(Ne), where O(Ne) is the total number of edges
in the messsage graph. Among them, the time complexity of
constructing or maintaining the multi-relational graph with
N messages is O(N + Ne) = O(Ne). The aggregation of
MarGNN framework takesO(Ne+NR+N+Ne) = O(Ne),
where the first O(Ne) is the complexity of intra-relation
aggregation, O(NR+N) is the complexity of inter-relation
aggregation, the second O(Ne) is the complexity of rein-
forced neighbor selection. Among them, R is the number of
relations. For the BasCL mechanism, loss calculation takes
O(
∑B
b=1)|m2

b | + mb), where mb is the number of messages
in the b-th batch. In the Crlme method, we need O(N) to
map non-English messages to English semantic space. In
addition, we count the number of epochs consumed and
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the average time consumed in each epoch of the online
maintenance stage (more details in Fig. 3 in APPENDIX C.).
From the statistical information of each time period, it can
be seen that the average time consumed by each epoch is
proportional to the number of messages that need to be
maintained, and the number of epochs consumed in the
time period gradually decreases as the number of main-
tenance increases. Note that the newly added preserving
threshold selection mechanism does not bring a significant
increase in complexity, so the time complexity O(Ne) of our
architecture is the same as the original work KPGNN. From
the perspective of overall time and epoch consumption,
although FinEvent brings higher epoch consumption in
the early maintenance stages, as maintenance progresses,
epoch consumption in the subsequent moments gradually
decreases and shows a stable trend.

7 RELATED WORK

Social Event Detection. Based on their objectives, social
event detection methods can be broadly categorized into
document-pivot (DP) methods [9], [14], [53]–[56]: aim at
clustering social messages based on their correlations, and
feature-pivot (FP) ones [13], [57]: aim at clustering social mes-
sages elements (such as words and named entities) based on
their distributions. The presented FinEvent is a DP method.
Based on their application scenarios, social event detection
methods can be divided into offline [9] and online [4], [13],
[14], [54], [56], [58] methods. Though offline methods are
essential in analyzing retrospective, domain-specific events
such as disasters, stock market trading, major sports events
and political campaigns, online methods that continuously
work on the dynamic social streams are desirable [4], [13],
[58]. For different techniques and mechanisms, social event
detection methods can be separated into popular classes
such as methods rely on incremental clustering [53], [54],
[56], community detection [13], [14], [18], [22] and topic
models [55]. These methods, however, are limited by latent
knowledge as they ignore the rich semantics and structural
information contained in the social streams to some extent.
Furthermore, these models have too few parameters to pre-
serve the learned knowledge. Though the Text-SimCLNN
[58] presents a graph attention network and contrastive
learning based text semantic encoding method, it does not
fully consider the structural features and relations among
social messages, and even judges the cluster by single
document without considering the common contributions of
adjacent documents that appear in the same period, which
makes it easy for nodes that should belong to the existing
cluster to be misjudged as a new cluster. Both [9] and [59]
belong to GNN-based social event detection methods, but
these models only implement static event classification and
can only work offline. FinEventis different from the exist-
ing methods as it effectively acquires, extends, preserves,
and transfers knowledge by continuously adapting to the
incoming social messages.
Inductive Learning with Graph Neural Networks. The
Graph Neural Networks (GNNs) [29], [48], [60]–[63] have
been widely used in graph data representation learning and
applications. In general, a GNN extracts, aggregates, and

updates node contextual representations from source neigh-
borhoods, which realizes data diffusion across the graph
structure. Depending on their extraction and aggregation
strategies, some GNNs [48] only conduct transductive learn-
ing [64] as they require pre-known, fixed graph structures.
Others [29], [60], [65] can be used in inductive learning [64],
which means that they can be applied to novel test patterns
without repetitive training. Though often discussed, induc-
tive learning using GNNs is rarely evaluated or utilized in
real application scenarios [64]. The proposed FinEvent is
the first to leverage GNNs’ inductive learning ability for
incremental social event detection.
Combination GNNs and Reinforcement Learning. There
are a few attempts to marry GNNs and RL to boost the
representation learning ability of graph data. DeepPath [66]
is a knowledge graph embedding and reasoning frame-
work based on RL policy, and the RL agent is trained to
ascertain the reasoning paths in the knowledge base. RL-
HGNN [67] devises different meta-paths to learn its effec-
tive representations, and uses a DRL-based policy network
for adaptive meta-paths selection in downstream tasks. As
opposed to MarGNN, the RL-HGNN model pays more
attention to revealing meaningful meta-paths or relations
in heterogeneous graph analysis. Similar to our MarGNN,
both CARE-GNN [27], using the Bernoulli Multi-armed
Bandit process to select neighbors, and Rio-GNN [68], using
recursive reinforcement learning to speed up the process
of balancing filter thresholds when offline, are designed to
improve the effectiveness of GNNs, but these models are
no longer applicable in weighted graph and incremental
scenarios. GraphNAS [69] employs RL to search the opti-
mal graph neural architectures. Policy-GNN [70] formulates
the GNN training problem as a Markov Decision Process,
and can adaptively learn an aggregation policy to sample
diverse iterations of aggregations for different nodes. How-
ever, neither GraphNAS nor Policy-GNN models consider
heterogeneous neighborhoods in aggregation although they
pay more attention to neural architecture searching.
Density-based Stream Clustering. Density-based stream
data clustering methods [4], [71]–[74] are fundamental tech-
nologies for wide social data mining and analysis. How-
ever, compared to these clustering methods, the DRL-
DBSCAN firstly explores how to obtain a stable clustering
effect of social events by combining DBSCAN with a deep
reinforcement learning method without an offline mainte-
nance process.

8 CONCLUSION

This paper studies FinEvent a reinforced, incremental
and cross-lingual social event detection architecture from
streaming social messages. To learn social message embed-
ding, a multi-agent reinforcement learning guided multi-
relational graph neural network framework MarGNN is
presented. A deep reinforcement learning guided density-
based spatial clustering model DRL-DBSCAN is designed
to select optimal parameters in event detection tasks. The
conducted experiments on Twitter streams suggest that Fin-
Event achieves significant and consistent improvements in
model quality in performance on offline, online, and cross-
lingual social event detection tasks. In the future, we aim to
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extend the multi-agent RL guided GNNs to learn complex
graph data representation and their applications, such as
event correlation, event evolution, etc. In addition, it is also
interesting to study how to extend our models to other
clustering tasks.
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1 APPENDIX A. OPTIMAL PRESERVING THRESH-
OLDS EVALUATION

Deep layers analysis. Preserving threshold also represents
an explicable approach to overcome over-fitting and over-
smoothing problems for deep layers in GNN. To verify our
inference, we design three varients of FinEvent with 4/8/32
layers and their corresponding model without preserving
thresholds. We still adopt the latest-message strategy and set
window size to 1, and report the performance of the models
on M9 to M14 in Fig. 1. It is observed that FinEvent with
preserving threshold improve the detection effects for all
the cases, and the improvement is greater as the layer
grows. Different from [1], which drops edges in graph
randomly, multi-agents in FinEvent drops edges based on
certain rules and their learned experiment. To conclude,
FinEvent provides a reasonable edge-drop instruction for
the improvement of deep GNNs.

M9 M10 M11 M12 M13 M14
message blocks
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0.5

0.6
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NM
I

Layer-4(threshold)
Layer-4(no threshold)
Layer-8(threshold)

Layer-8(no threshold)
Layer-32(threshold)
Layer-32(no threshold)

Fig. 1: Inference results for different depths of layers.

Interpretability analysis. In addition, while in training or
detection stage, different agents would eventually choose
different preserving threshold values. The various thresh-
olds indicate different contributions made by agents, which
can be abstracted as macroscopic attention of GNN towards
different relations. As depicted in M3, for instance, relation
M-E-M gets higher threshold values than others probably
for occupying higher importance in this block. We also
display the preserving thresholds in a week as radar maps
(shown in Fig. 2) for the convenience of observing the flow
of relations’ contributions. It demonstrates the change of
block and event structures with time. The enclosed area can
be approximately regarded as the overall contributions one
relation makes to events of this week, and hence we can
intuitively obtain the global relation importance. All of these
give necessary interpretable explanation to GNN for event
detection.

2 APPENDIX B. HYPER-PARAMETER SENSITIVITY

This subsection studies the effects of hyperparameters in the
incremental social event detection experiments. We set the
hidden embedding dimension to 128 for Twitter dataset to
minimize the graph entropy as much as possible, and only
change the output embedding dimension d and window
size w. Fig. 4 compares the performance of FinEvent when
adopting different output dimension as well as window
size for each message blocks. The NMI, AMI and ARI
results have average deviations in the range from 0.01-
0.03. This suggests that the metrics of FinEvent change with
d and w, but rather significantly. The output embedding
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Fig. 2: Comparison on the performance of varients of
FinEvent on English dataset in 3 weeks. The colors in-
dicate different relations: M-U-M is colored in red, M-E-M
is colored in orange and M-L-M is colored in green.
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Fig. 3: Time consumption in the online maintenance stage.

dimension has little influence on the performance of Fin-
Event. For example, the block-wise average NMIs of output
embedding dimension are 0.701, 0.719, 0.716, respectively.
FinEvent reaches the best performance when d is set to 64.
Adopting a smaller window size (2 or 3) in general gives
a slightly better performance. For example, the block-wise
average NMIs of different window sizes are 0.719, 0.729,
0.723, 0.714, respectively and average AMIs are 0.693, 0.702,
0.698, 0.687, respectively. When window size is set to 3,
FinEvent achieves the best performance. A possible reason
is that for Twitter dataset, w = 3 has best adaptability to the
continuation of events. In a word, FinEvent is sensitive to
the changes in hyperparameters.

3 APPENDIX C. STATISTICS OF SOCIAL STREAMS

This section depicts the number of messages and the num-
ber of events composed in each block from English and
French dataset, respectively. The details are shown in Table 1
and Table 2. In addition, the time consumption of the social
stream is given in Figure 3
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TABLE 1: The statistics of the social stream from English Twitter Dataset.
Blocks M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

# of messages 20, 254 8, 722 1, 491 1, 835 2, 010 1, 834 1, 276 5, 278 1, 560 1, 363 1, 096
# of events 155 41 30 33 38 30 44 57 53 38 33

Blocks M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21

# of messages 1, 232 3, 237 1, 972 2, 956 2, 549 910 2, 676 1, 887 1, 399 893 2, 410
# of events 30 42 40 43 42 27 35 32 28 34 32

TABLE 2: The statistics of the social stream from French Twitter Dataset.
Blocks M0 M1 M2 M3 M4 M5 M6 M7

# of messages 14, 328 5, 356 3, 186 2, 644 3, 179 2, 662 4, 200 3, 454
# of events 79 22 19 15 19 27 26 23

Blocks M8 M9 M10 M11 M12 M13 M14 M15

# of messages 2, 257 3, 669 2, 385 2, 802 2, 927 4, 884 3, 065 2, 411
# of events 25 31 32 31 29 28 26 25
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